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ABSTRACT

Loglinear models are adapted for the analysis of multivariate social networks, a set of
sociometric relations among a group of actors. Models that focus on the similarities and

differences between the relations and models that concentrate on individual actors are discussed.

for combining these models are described, and the various models and computational methods
are applied to the analysis of data for a corporate interlock network of the 25 largest

organizations in Minneapolis/St. Paul and for a classic network of eighteen monks in a

cloister.

Key Words: Loglinear model; Directed graph; Social network; Sociometric data; Iterative
proportional fitting; GLIM model.
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1. INTRODUCTION

Sociometric relations are typically defined for a set of social actors. A social network is a

construct describing these actors and the various relations that exist among them. As used in

the social sciences, actors have been individuals in groups, organizations, cities, or even nation

states; relations have ranged from Kkinship to friendship to transfers of scarce resources to

corporate board of directors interlocks.

- Moreno (1934) was the first social scientist to study individual networks in a systematic

[‘_ manner, and was apparently the first network researcher to use mathematics. Much of his
» terminology, including such phrases as "sociogram,"” sociomatrix,” and "sociometric test,” is still
: in use today. Festinger (1949) and Katz (1947, 1953, 1955) developed Moreno’s ideas, focussing
S .

on matrix representations of sociometric data, the popularity of actors, mutuality of

v
bS
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relationships in social groups, and even the representation of interpersonal relations as a
stochastic process (see Katz and Proctor, 1959). Formal graph theory, as reviewed in this
pe;.per in Section 2, was introduced to social network research by Cartwright and Harary (1958),

in an attempt to quantify the social psychological theories of Heider (1958).

Sinze thesé pioneering efforts, sociologists, social psychologists, and social anthropologists have
repeatedly used the social network paradigm. Davis and Leinhardt (see Davis, 1970) scanned
the "sociometry” literature and found nearly 900 examples of social networks from diverse

: small groups. Since 1970, social network analysis has grown rapidly in popularity. Leinhardt

?! (1977) presents a collection of twenty-four previously published papers which provide an
historical perpsective on social network analysis, and a collection of papers in a volume edited
L. by Holland and Leinhardt (1979) summarizes the state-of-the-art as of about 1975. Burt
- - (1980) discusses more recent sociological developments, Wasserman (1978) reviews alternative

mathematical models for small group behavior, and Frank (1981) summarizes some of the
statistical theory on random graphs. Almost none of this research on the analysis of social

networks has appeared in statistical journals, with the exception of some of the work by Katz

vy v.z J.’T_l AN
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and Wasserman (1980). There are just a few papers with substantial statistical content.

In a landmark statistical paper for network analysis, Holland and Leinhardt (1981) proposed
an exponential family of probability distributions for the analysis of a single sociometric
relation. Fienberg and Wasserman (1981a) discussed simple computational procedures for fitting
these models, and proposed some extensions to model networks in which the actors fall into
natural subgroups. These distributions include parameters that relate characteristics of
individual actors (e.g., popularity) to differential rates for entering into or severing sociometric
relations. In Fienberg, Meyer, and Wasserman (1981), we described a related class of models
for multiple relations, extending Holland and Leinhardt’s family to more than one relation by
focussing on the associations among the relations rather than on influences of individual actors.
Here we bring these two types of analyses together, and present some "combined models” for
the analysis of multivariate directed graphs. These mpdels incorporate actor and subgroup

parameters, and quantities to measure the degree of interrelatedness of the differeqt relations.

Methods to study a multivariate directed graph which focus solely on the relations and
ignore individual social actors are forms of macroanalysis. Data for such analyses consist of
aggregate counts of the different structural patterns which occur within the network. The
methods for studying local structure in a network by using the triad census (Holland and
Leinhardt, 1975; Wasserman, 1977) can be labelled macroanalytic. Alternatively, we could study
the attributes of the actors, and how these attributes affect the existing ties between them.

Such a study is a microanalysis, and promises a more fine-grained investigation.

Both the macroanalysis and microanalysis approaches have substantive value. A macroanalysis
of a group centers on the global structure of its relations, asking questions such as: Which
relation exhibits the strongest "reciprocity,” or is most likely to have symmetric flows? Are
there any "multiplex" patterns, flows of different relations in the same direction? Are there
any patterns of "exchange,” in which a flow in one direction for one relation is reciprocated

by a flow in the opposite direction for a different relation? Are there any higher order
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. interactions, involving three or more flows for two or more relations?

[‘ A microanalysis of a group is a local study, turning attention to the level at which data are

actually gathered. Most microanalyses have been limited to groups with data on just a single

5;_3 relation. The primary concern of such studies is the individual group member: Which actors

have the most prestige or popularity? Which actors are involved in many relations, which in
few? Do actors enter into mutual, symmetric relationships at different rates? Such questions,
while concerned with individual actor effects, are often answered by examining dyadic or

triadic relationships.

As an example, we consider the now classic study of 18 monks in an isolated American
monastery, conducted by Sampson (1969) and partially analyzed by Holland and Leinhardt
L (1981), Breiger (1981), and many others. Sampson studies four types of relations: Affect,
: Esteem, Influence, and Sanction. Actors were asked to give three positive choices —— e.g.,
which three brothers do you like best (positive affect) — and three negative choices — e.g.,
m which three brothers are you most antagonistic towards (negative affect) —— for each of the
- four types. In this way, data were gathered on eight relations: (1) Like and (2) Antagonism
(Affect), (3) Esteem and (4) Disesteem, (5) Influence and (6) Negative Influence, and (7) Praise
! and (8) Blame (Sanction).

We define
~‘ 1, if actor i chooses actor j on relation
H o 0, otherwise
i = L2181 = 12,8
». and arrange these data into 8 binary sociomatrices, X = {x x_...x .} each of dimensions 18 X
a8 18. Versions of these arrays are given in Table 1, where the rows and columns have been

permuted to reflect constructed subgroupings of the actors. Since the 1's, 2's and 3's in Table

1 refer to order of choices, we set all non-zero entries equal to 1 to obtain binary

sociomatrices.




TABLE 1
Sampson's (1969) Data
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Holland and Leinhardt (1981) used the "Like" relation to illustrate their new methods. Other
researchers (White, Boorman, and Breiger, 1976; Brieger, Boorman, and Arabie, 1975) have
studied all the relations, but in a non-statistical attempt to aggregate the 18 monks in a
substantively meaningful manner. In later sections of this paper, we analyze a version of the
network which aggregates over positive and negative affects, searching for both macro- and

micro-models that provide good statistical descriptions of the relationships among the actors.

Most sociometric research, both empirical and mathematical, is preoccupied with overly
simplistic descriptions of group structure. This is very apparent in Burt's (1980) review. The
goal of this paper is to build upon the ideas of Holland and Leinhardt to develop models for
the simuitaneous macro- and micro-analysis of multiple relational networks. These models aid
in the formulation and testing of theories concerning group dynamics. In the next section we
review Holland and Leinhardt’s model and our .extensions of it, and then in Section 3 we
illustrate these ideas in an analysis of a 1976 corporate interlock network from the Twin Cities
(Minneapolis/St. Paul). We emphasize the many substantive findings that can be obtained
from this form of statistical modelling. In Section 4, we present several models for the
analysis of data from multivariate directed graphs, and conclude by demonstrating these ideas

on Sampson’s network.




2. BACKGROUND: MODELS FOR SINGLE RELATIONAL DATA

A directed graph, or digraph, consists of a set of g nodes, and sets of directed arcs or
"choices” connecting pairs of nodes. Digraphs are natural mathematical representations of
social networks, where the nodes represent individuals, organizations or other social actors, and
the arcs represent relations: directed attitudes, feelings, or transfers, such as friendship. A
digraph is frequently summarized by g X g sociomatrices, 5:' one for each of the R defined
relations. The g diagenal terms of each sociomatrix, Xm, are defined to be zero.

First consider a digraph with a single relation, R = 1. The row total, Xi*, is referred to as

the out-degree of node i, and the corresponding column total, X , as the in-degree of node

»i’
i. A matrix x can be thought of as the realization of a matrix of random variabies, X, where
we assume that the ( } ) pairs or dyads,

Du. = (X“.Xﬁ). i<i,
are independent bivariate random variables, with 2 = 4 possible realizations, only 3 of which
are distinguishable:

(1,1) : mutual

D (1,0) or (0,1) : asymmetric

(0,0) : nuil.

A multivariate directed graph, or muitigraph, is described by a collection of random
sociomatrices X = {X, XX, ). and we assume that the ( %) dyads,
xijl’xjil

xijz'lez

R, = . i<,

xijl’xjm}
are independent 2R-variate random variables with 2°® possible realizations. For both digraphs

-4
4
T 9
1




and multigraphs, the assumption that the dyads are independent random variables is a crucial

one, and is not subject to examination by the framework developed in this paper.

Holland and Leinhardt (1981) introduced a class of models, labelled P. to model micro-
behavior in a social group, on which only one relation has been defined. We now describe
these models, and explain how their analysis can be accomplished by using standard
computational approaches to the analysis of loglinear models for categorical data. We then
outline some extensions of these models that allow for grouping of individual actors. Further
details can be found in Fienberg and Wasserman (1981a). In Section 4 we extend this

approach to the analysis of multigraph data.

Consider a network of g nodes and a single relation, and represent the sociomatrix X as a

four-dimensional g X g X 2 X 2 cross-classification Y = (Yijk IL)' where the subscripts i and j

refer to the two actors in a dyad, and k and £ refer to the dyad state:

1, if D-,- = (X.j.xj.) = (k,0)
Y. g = ‘ v 2.1
ke 0, otherwise.

For example, Y.

= 1 if Dij is a mutual dyad. Note that the 2 X 2 tables xij(itj) contain

one 1 and three 0's. Furthermore, Yijk = in e and the marginal totals of these 2 X 2 tables

L 2

. ..respond to indicator variables for Xij and Xﬁ. Because each margin is either (0,1) or (1,0),
' the interior of the table is completely determined by its marginal 'totals.
,.' We denote a realization of Y by y = (yijkz). and let ”ijk£ be the probability of the
C observation (k,£) for the dyad (i,j), where
-
9 Z 7 =1, 2.2
¢ ke
f and we define i ’ = log "ijk[ The Holland-Leinhardt P, class of models is as follows:
-
-«
L
8
3
[
£
|- " — . e e m
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Fio = N
K =xi.+ai+ﬂ.+8, ]
1o ! ! (2.3) ]
Fan = Ayt e B 6,
where Fijny - xii ¥ ¢ * ai * 'Bi * ﬂi-+ 26 + pij’ '-.-
g g L
Z2a =X B =0, 2.4) )

i=1 ' j=1 °

and P = p. The sufficient statistics for the parameters of p, are easily expressed as margins

of X

lby““ = M, Number of mutuals,
Y =X Out~degree of node i,
2.9
Yo =Xy In-degree of node j,
Yoo = X0 Total number of choices.

Through the use of the full y array, and its redundancies, one can show that fitting p, 10
the x array is equivalent to fitting the "no three-factor” interaction loglinear model to y. A
proof of this equivalence is given in Meyer (1981). Thus we can fit p, to data by using the

standard iterative proportional fitting procedure (IPFP) applied to y. Furthermore, the special

cases of P, listed in Table 1 of Holland and Leinhardt (1981), all have equivalent loglinear ) _':‘_‘

models for y, and thus can also be fit using the standard IPFP. The equivalent models are o

given in Table 2 of Fienberg and Wasserman (1981a). . -

by

An important generalization of p starts with the equations (2.3) with constraints (2.4) and N
further postulates that ’

PyE=Prp P i< . (2.6) .‘.
where the { pi} are normalized to sum to zero. The effect of reciprocity now depends MR
additively on the individual actors in a dyad, and the {,oi} measure the rates at which actors 1
are likely to enter into mutual, symmetric relationships. This model provides an important _._1

L




b A end
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P

goodness-of -fit test for P, (see Fienberg and Wasserman, 1981b) since it contains p, as a

special case, when P =P =p = 0.

We now describe a variant on P, for single relational sociometric data that assumes that the
g actors have been partitioned into K subgroups. Of substantive interest is how likely it is
that actors in one subgroup have relations with actors in othur subgroups, and how structurally
similar are actors in a given subgroup. We label the subgroups Gl.Gz....,GK. where the
partition of actors is mutually exclusive and exhaustive, and assume that subgroup Gk contains
g actors, such that g + g + .. + g = g For example, White, Boorman and Brieger (1976)
(see also, Breiger, 1981) aggregate the 18 monks from Sampson’s cloister into 3 "blocks” or
subgroups, containing g = 7, g = 7, g, = 4 actors. This aggregation is reflected in Table 1,
where the rows and columns of the X matrices have been rearranged so that the first 7 rows
and columns refer to actors in C‘:’ and so forth. Brieger, Boorman, and Arabie (1975)
construct a slightly different partition. We note that these partitions, called "blockmodels,”
were accomplished by grouping together all actors that are "structurally equivalent,” relating to

the other actors in the group in identical fashion (see Lorrain and White, 1971).

We modify equations (2.3) by introducing inter- and intra-subgroup choice and reciprocity

parameters:
- (rs)
Fio = AT
Fno = \( 4 gl
! ieGandje G 2.7
p =\ 4 g0 f s
i1

Py = A 4 gl 4 gen o )
The parameters {6} are choice effects, and the {p'™}, reciprocity effects. The parameters
{\"} are included to insure that the yijkz sum to 1 for each dyad. One special case of the
subgroup model (2.7) sets p'™ = 0 for all r and s. Holland and Leinhardt (1981) note that, if

we further define

7@ =P(X =1li ¢« G and je G 2.8)

PRy W PO o I Py

et B i et st aaiar it aeen
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then, in this special case,
”(ts)
0(") = log = logit (”(“)). (2.9)
1 - "(rs)

A second special case of (2.7) is also a special cqase of P, in which we have a simple
additive model for 6. All actors in subgroup G _have a common a, a”, and a common 2,

A", We set

g'\» = 8 + a'’” + ﬂ(s)
(2.10)
P(ts) = p.

This model is equivalent to P, if K = g and is a simplification, in the sense that we reduce

the number of a’s (and 4’s) from g~1 to K~1.

For details about these and other generalizations and specializations of P, and for comments
on fitting these subgroup models to single relational data, see Fienberg and Wasserman (1981a).

In Section 4 we give a multivariate generalization of this model.

M e
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3. ANALYSIS OF A SINGLE RELATION IN A CORPORATE NETWORK

To illustrate these models, and to present some additional methods, we consider 1976 data on

a network of the twenty-five largest publicly-owned corporations headquartered in the Twin
Cities of Minneapolis and St. Paul. A firm is included in the network if it is among Fortune
magazine’s 500 largest industrials, 50 largest commercial banks, 50 largest life insurance
companies, S50 largest financial companies, S50 largest retailers, S0 largest transportation
companies, and 50 largest utilities. These companies are listed in Table 2, along with their

ranks and location.

A preliminary analysis and thorough discussion of this network is given by Galaskiewicz and
Wasserman (1981). An arc (or a "corporate interlock") exists from firm i to firm j if an
officer of firm j is on the corporate board of directors of firm i. An interesting feature of
this network is the exclusion of dyadic interactions in which the two firms of the dyad have
the same Standard Industrial Code. These "competitive” dyads have been excluded because of
SEC anti-trust regulations that prevent interlocks between firms in the same industry. There

are 27 of these "structurally zero" dyads.

A variety of models was fitted to two versions of this network. One version included all 2§

firms, and the other included only 20 firms, excluding four firms that do not interact with the
others (have zero in-degrees and out-degrees) — American Hoist and Derrick, IDS, Gamble-
: Skogmo, and North Central Airlines — and a firm, Land O'Lakes, which is a cooperative, and
}-. hence not strictly publicly owned. The calculation of degrees of freedom (df) is tricky because
of the structural zeros and the zero in-degrees and out-degrees. In general we follow an
L. approach similar to that suggested by Bishop, Fienberg, and Holland (1975, pp. 115-116).
3 Below, we report likelihood ratio (G°) statistics and degrees of freedom for just 2 models.
t
[
[
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Manufacturers

14

Minnesota Mining & Manufacuring (3M)

Honeywell

General Mills

Control Data

Pillsbury

Land O’Lakes

International Multifoods

Bemis

Peavy

Heorner-Waldorf

American Hoist and Derrick

Economics Laboratory
Commerical Banks

Northwest Bankcorporation

First Bank System
Life Insurance Companies

Minnesota Mutual Life Insurance

Northwestern National Life Insurance
Diversified Financial Companies

St. Paul Companies

Investors Diversified Services (IDS)
Retailing Companies

Dayton Hudson

Gamble~Skogmo
Transportation Companies

Burlington Northern R.R.

Northwest Orient Airlines

North Central Airlines

Soo Line R.R.
Utilities

Northern States Power

Table 2. Twin Cities Corporate Network

Fortune Rank

(1976}

56

67

84
170
173
180
233
318
361
382
434
500

18
20

41
42

20
28

20
22

10
18
48
49

28

City

St. Paul
Minneapolis
Minneapolis
Minneapolis
Minneapolis
Minneapolis
Minneapolis
Minneapolis
Minneapolis
St. Paul

St. Paul

St. Paul

Minneapolis
Minneapolis

St. Paul
Minneapolis

St. Paul
Minneapolis

Minneapolis
Minneapolis

" St Paul

St. Paul
Minneapolis
Minneapolis

Minneapolis

ae st Sinte Shalir il g




g =25 g=20
- Mode/ G af F  df
;‘ p8.plahif) 18669 192 18289 176
3

: Blp=a =p =0 3246 54 27646 341

[ As can be seen, the very simple model with a single parameter provides %an adequate
! description of both versions. This implies that the actors in neither version exhibit differential
productivity or attractiveness, and that there is no tendency toward reciprocity.' We conclude

that the elements in X are independent identically-distributed Bernoulli random variables with p

4
b
&
:‘ = P{Xij = 1} and log odds ratio & = log (p/(1-p)). Maximum likelihood estimates (MLEs) of
- 9 are -2.49 (g = 25) and -2.01 (g = 20). This yields » = 0.0906 (g = 25) and p = 0.1553
; (& = 20).
¢

We now discuss some additional and new methods for the analysis of single relational data.
[ We first describe tests for the adequacy of partitions of actors into subgroups, and then show
how to estimate main effects for and interactions between the discrete variables used to
partition the actors. These ideas, along with the methods described in Holland and Leinhardt
(1981) and Fienberg and Wasserman (1981a), should provide a more complete "package"” for

& single relational data. We intend the remainder of this section to fill the existing gaps in this
3 methodology, and will use the 1976 Twin Cities corporate network simply for illustrative
purposes.

L‘d Suppose we have two possible mutually exclusive and exhaustive partitions of a set of g

actors, G = {G,, G, ... G,} and H = {H, H, ... H }, such that K < L, and the G’s are
2 unions of the H's. For example, let g = 6, and define G, = {123}, G, = {456}, and H =
g {12}, H, = (3}, and H, = (456} then, G, = H U H, and G, = H. Thus, G is an
aggregation of H.

. We consider whether or not to further aggregate the actors into K subgroups, assuming that

the actors are already partitioned into L subgroups; i.e., can we combine some of the L
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existing subgroups to form K larger ones? Note that if L = g then we ask whether or not .
we should do any aggregation at all. We test ]

Ho P, applied to K subgroups is appropriate .; 5
versus .
H AP applied to L subgroups is appropriate .
The version of P, applied to subgroups is given by equations (2.6) and (2.7). In terms of the f_‘
model parameters, there are L-1 each of the & and A effects under H, and K-1 each .1
under Ho. The a’s and f's for the subgroups that are aggregated under H , are equated. : N
Since Ho is a special case of H».' if we assume that the model under HA is correct, then the }
conditional likelihood ratio statistic G*(H,|H,) = G*(H) - G*(H,), with g(g-1) - 2K - [g(g-1) ' g
= 2L] = 2L-K) degrees of freedom can be used to test H_ versus H. If L = g then the o
test statistic has 2(g - K) degrees of freedom. ) : ;J
)
For the 1976 Twin Cities corporate network, we focus on three partitions using the =
information in Table 2: .
G, =G, = Mpls. firms, G = St Paul firms} .
G2 = {G,, = Large firms, G,, = Small firms} ]
H = {H = Large Mpls. firms, H, = Large St. Paul firms, o
H, = Small Mpls. firms, H, = Small St. Paul firms} .
"Size" of a.firm is determined by the Fortune ratings: "large” firms rank among the larger 250
(or 25). The 25X25X2X2 y array, aggregated to a 4X4X2X2 array to reflect the H partition, is
given as Table 3. Note that both G, and G, are aggregations of H. , j
The following hierarchy lists the three aggregations and gives the associated likelihood and
conditional likelihood ratio statistics for testing the significance of aggregations: .
o
‘. . 1
-
4
L
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H H, H, H,
LARGE SMALL
Minneapolis St. Paul Minneapolis St. Paul
L Minneapolis 54 17 31 0 53 § 5 2
A 7 8 4 3 4 1 1 0
R
G St Paul 31 4 6 3 25 0 11 3
E 0 3 3 0 0 0 0 0
S Minneapolis 53 4 25 0 38 2 2 0
M s 1 0 o 2 0 0 0
A
L St Paul 35 1 1 0 25 0 8§ 1
L 2 0 3 0 0 0 1 0
Table 3. 1976 Twin Cities Corporate Network Relations aggregated
into 4 subgroups based on Location and Size
Aggregation s df Nea Adf
p, - no aggregation; 25 actors : 186.69 192
H - aggregation by size & location; L=4 401.80 538 215.11 346
- G, - aggregation by location; K, =2 46162 54 59.82 4
F G2 - aggregation by size; K =2 525.63 542 124.01 4

Note that G’(Hlp,) = 401.80 - 181.54 = 220.26, is less than the corresponding difference in

L‘ df, 346, so that one could argue that aggregating the 25 actors into 4 subgroups is not
h necessary. The statistic G*(H) ~ X:” is clearly small, however, and simplicity of the H
* aggregation is so desirable that it is. a very attractive model. Both statistics C}’(Gl |H) = 59.82
E . and GZ(GZIH) = 124.01 yield p-values less than 10™, so further aggregation is not advisable.

-

There is one substantial advantage in using aggregated versions of these models. Besides the
ET{ ease with which the maximum likelihood cell estimates can be computed (we need only a K X
F,

4

K X 2 X 2 table, where K is usually quite a bit smaller than g), the standard X? distributions

T M
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>

are more appropriate as reference distributions for the resulting test statistics. This is because |

the number of parameters (2K with the P, ~subgroup model) is fixed and does not increase in

the limit, as g < oo. There are problems that arise in testing when using models with ®

parameters for each actor (see Haberman (1981)). Fortunately, these problems are attenuated -

when actors are aggregated.

In the following section we generalize this approach to the case of multiple relations.

*
®
®
°
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4. MODELS FOR MULTIPLE RELATION DATA

We now turn our attention to networks of actors on which several relations are defined.
We discuss three types of models: (1) Models with neither actor nor group parameters; (2)
models with only group parameters; and (3) models with both actor and group parameters.
The first type is a family of models for the macroanalysis of the multiple relations that
ignores any differences between actors. These models are briefly described in Fienberg, Meyer
and Wasserman (1981), and were used implicitly by Galaskiewicz and Marsden (1978) to study

resource flows between organizations in a2 midwestern community.

The most useful models for muitiple relations are those that include parameters to reflect
different choice tendencies of the actors, particularly when they have been partitioned into
groups. If each group is a singleton, then we have a different set of parameters for each
actor; however, in practice this is likely to be a very large number. Thus, the assumption of a
specific partition, chosen as a consequence of extra-relational information, allows us to
parsimoniously limit the number of {:arameters. and (as ‘is the case with single relational data)

use standard X> asymptotic distributions for testing.

The last type of model is a generalization of the family of models for multiple relational
data sets in which the actors have been partitioned into mutually exclusive and exhaustive
groups. The assumption that all actors in a specific group relate to actors in other groups and
to other actors in the same groups in identical ways may not always be the case. There may
be subtle individual differences among the actors in a subgroup. Thus, the third type of
models allows us to add individual actor parameters to study these differences to the second

type of models with just group parameters.

We conclude this paper by illustrating these models on Sampson’s network of 18 monks, for
whict. we have 4 positive relations and 4 negative relations, and three subgroups. empirically

determined by the use of clustering algorithms.




4.1 Models for the Macroanalysis of Multiple Relations

In order to model the macro-aspects of multigraphs we need to develop a notation for the
2R possible realizations of the {Dij} and a representation for the table of summary counts of
these realizations obtained by adding across dyads.. Since these models assume no individual

actor differences, the sufficient statistics for the model parameters are margins of this table.

Table 4 contains summaries of Sampson's data, shown in Table 1, in the form of two 2
tables of counts of pairs of monks, one for the four positive relations and the other for the
four negative relations. Within each table, each pair is counted twice, once from the
perspective of each member, yielding a total count of 2 X ( ;' ) = 306. We refer to these

tables as w-arrays, with entries {w Here R = 4.

i"jikk’ u'}'

There are other ways to arrange thafe summary counts in tabular form. One way eliminates
the cells which occur twice. In general, a 2°® w-array contains 2*"(2® + 1) unique cells.
Among these, are 2% cells whose counts are duplicated; i.e., occur twice in w. If we eliminate
the doubling and duplication in the 8-dimensional w-arrays given in Table 4, we get two
arrangements of 136 cells, whose counts correctly total 153. In Table 5, we give one possibie
arrangement of these 136 cells in a form resembling a four dimensional 3 X 3 X 3 X 3 cross~
classification, in which some of the 81 cells have more than 1 count. We denote the counts in
Table 5§ by z = {z’m: a,bcd = M,A,AN} (the use of the subscripts A and A is décribed in

the caption to the table).

We wish to model Pe the probability that a randomly selected dyad would be assigned to
cell (a,b,c,d) of Table 5, where

Py = L @1

all cells
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Table 4

Sampson’s Cloister Data Aggregated Over Actors

(a) the order of the variables is {like, esteem, influence, praise}
with the index on the first variable changing fastest.
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(b) the order of the variables is {antagonism, disesteem, neg influence, blame}

with the index in the first variable change fastest.
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We define

log ., if a,b,c, and d are each equal to
either M or N

¢
sbed log (p,,,/2). if one of ab.c, or d equals A ,

make our models consistent with the univariate model of Holland and Leinhardt (1981).

parameters with hierarchical structure reflecting 13 distinct types. When R = 2, there are

types and 81 parameters.

FIGURE 1 PATTERNS OF FLOW DEPENDENCY IN DYADIC PATTERNS

L‘;. ol . [P .- A I

types of dyadic patterns. In Fienberg, Meyer, and Wasserman (1981) we considered R =

(4.2)

and we develop a class of linear models for the {6““} which yields an affine translation of a
class of Toglinw models for the {p_u}. The reasons for this approach are discussed by
Fienberg, Meyer, and Wasserman (1981); primarily, we introduce the factor of % for A cells to

The models for the {é.wl are linear in sets of parameters that reflect the various distinct

3

relations as displayed in Figure 1. The {¢  } were modeled with up to 36 (one per cell in 2)

only

7 distinct types and at most, 10 parameters are necessary. When R = 4, there are 22 distinct
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Table 5

(see Table 4a)

of Cells for Positive Relations from Sampson’s Data

Praise
M A N
Influence Influence Influence
Like M A N M A N M A 3
M ZM&MM ZM&AM zM&NM ZM&MA ZMGAAA ZMG{AX ZM61NA ZMGAMN ?Mauu Zmd
zMaMA ZMGAA ZMSA: szNA
M Esteem A ZM6MM ZM6\AM ZMGKM ZM6.NM ZM6MN ZMfAN szuTN zM&
szMZ zudm zmax ZM(?NK
N zudmu zmuua ZM6JNM zMgMA ZM8M ZMSA"'\ ZMG‘NA ZM.BMN ZMNAIb ZMJ
. z z zZ. .- z
- AMMA AMAA AMAA AMNA
M ZA5|MM ZAKAM zAbu'\M zAgNM z 8l 1 51 2, MN Zapman Zapan 2
ABIMK ZA&AZ zAb{RZ ZAKNX b‘ 5{ Aslm A
ZATMA zA.ng zAﬁXA 2A6NA
Z , aMM Z,aAM Zoaim Zaanm ZA6MN zAsAN ZAOXN z,
6 6 6 6 ZAGMZ ZA6A7\ A6ZA ZAGNZ T
A Esteem A
5 zZ. 2z zZ.. 2z.
AAMA AAAA
ZAAIKMM ZA6AM zAéRM zAgNM 8 6 A Zoavn Lazan Zos=n Z -
zAaux ZA§AX ZAéxx zAanx R T ‘ﬁ'
ZABMA zAPIJAA ZABZA zArilNA
N 2z z z z 2z z
ANMM “ANAM  TANAM TANNM ANMN “ANaN “anan 2
5 8 8 8 zABMZ zABAX ZABRF\' ZABNK 6 1 sA Aa
v
- 2
M sz«MM ZNL&M szNM sziMA ZN:}AA szAA NKNA Z N ZN"EN z,
ZNGMA ZNQAA zNﬁAZ szNA 0
N  Esteem A 2z z z z Zuamn Inaan Inain Iy
NﬁMM N6AM NaXM NfNM zNaM'A' 2"6;‘ sttu zN 6"7‘ 6 3 6 61
N ZN8MM ZNBAM ZNBNM ZNSMA zNEAA ZNBAK zNgNA ZNEMN ZaaN 2361
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The parameters in this ‘amily of models are GLIM-like in structure (see Nelder and
Wedderburn, 1972). A parameter is included in the model if and only if the corresponding
effect (such as choice, conditional multiplexity, etc.) is present. The parameters are also
hierarchical: if we set some parameters equal to zero, all related higher-order terms are also

Zero.

To fit these models to multivariate networks, we apply the general results for fitting
loglinear models given in Haberman (1974) or Appendix II of Fienberg (1980). The minimal
sufficient statistics (MSS’s) are linear combinations of the elements of the z array, with
coefficients of 0, 1, or 2. The fitted values of these elements are found by solving the
likelihood equations, which set the MSS's equal to their estimated expecied values. We can
either use a version of generalized iterative proportional fitling due to Darroch and Ratcliff
(1972), or a "trick,” given in Fienberg, Meyer, and Wasserman (1981), which relies on the
following two results:

Result 1:  For the class of affine translations of hierarchical
loglinear models described above, each set of MSS’s is
equivalent to a set of marginal totals for the 2°® table

(i.e., the w-table) with doubled and duplicated counts.

Result 2:  For each affir.z translation of a loglinear model for the
Z -table, there is a corresponding loglinear model for the
w-table, with equivalent estimated expected values,

once we take account of the duplication and doubling.

The estimated expected values for the elements of the w-array can be computed using the
standard IPFP and the estimates of the parameters calculated from the fitted values. We note
that the degrees of freedom for any model must be calculated using the model for the z-
array, and values of goodness-of-fit statistics computed using the w-array, dividing by 2 to

adjust for the doubling and duplications.
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4.2 Models for Both Microanalysis and Macroanalysis: Actor and Group Effects

We now consider models for multiple relations that allow the actors in the network to
engage in relations at possibly different rates, and include both actor and group effects. To
review, we suppose that the R sociometric relations defined for a group of g actors, are
binary, and the presence/absence of d@irected links between actors is recorded in the form of
R sociomatrices. As before, we concentrate on the dyadic relationships between the ( g ) pairs

of actors i and j, represented by the 2R-variate Qij. with realization d i

Primarily to limit the number of parameters, we now assume that the actors have been
partitioned into K mutually exclusive and exhaustive subgroups, Gl. Gz, GK. In practice, it
is very useful to allow for the inherent differences in the actors in this manner. If there are
single actors that behave contrary to the group as a whole (or to the collection of subgroups),
then they can be placed into their own singleton subgroups. Thus, their individual differences

can still be modeled directly.

In this section we outline models which can include both actor and group effects. These
models contain all the previous models as special cases. The R sociomatrices are used to
construct a table of pseudo-counts, of size g X g X (2 X 2)8. From this multivariate version
of the y-array, we can aggregate (2 X 2)® tables to form a K X K X (2 X 2)® table, whose
entries are the frequencies of the different dyadic relationship patterns between actors of a
group partitioned into K subgroups. As in the earlier cases it is most convenient to work with
the full gxg X (2%x2)* data table but to describe models in terms of the unduplicated data
array. This approach also grants us a considerable degree of flexibility in fitting the models.
For many of the models it is possible to consider collapsed or aggregated versions of the data
which would result in smaller data tables. We believe that the unification which is introduced
by always considering the full data table outweighs the occassional advantage of having a

smaller table.

We will begin our discussion by concentrating on the choice parameters in an R = 3 relation
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network. As a starting point we contemplate the model

log (D =d )= \i0+ IR gd X + FR QU  for all i > j, 4.3)
~ij iy r={ T ir =i r o jir
which includes different choice parameters for each pair of individuals. The parameters \‘/

are normalizing constants and are required so as to meet the sampling constraints of the

problem.

Initially, we focus our attention on just the first relation. If we wished to consider a model
which asserted that the response depended only on the chooser we would allow 0‘l‘i’ = 0‘1”.
Similarly, dependence only on the chosen actor would lead to 0‘1‘1" = 0‘11". Obviously we could
allow chooser and chosen actor effects (but excluding the interaction) by specifying 0‘1”’ =
9‘1” + 0‘11". Another version of this model would be to suppose that individual actors assert
influence only through the groups to which they belong. In this case we could write 0‘1"" =
8‘17“” for the choosing group i, 0‘1”’ = 0:7‘1” for the chosen group j, 0‘|‘j’ = 0“7‘“’ + 0:7‘3” for
both, or even 0“‘-"’ = 0‘17“’-7"'” to indicate group by group choice interactions. If we aggregate
over groups then these models are just "actor” models where the actors are the groups. In
summary we have just described four basic classes of models; those which involve parameters
(8?) for each pair of actors, those with individual parameters (9" and 8%) for actors and the
corresponding notions, Y@YW and {#YN @YW} for groups. Thus some possible "choice-

only” models for one relation are:

. EENE 7S %
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log P(Dij = dij) =1 4 constant
2) 6w chooser
3 69 chosen
4) 69 + gV chooser and chosen
5) gu? interaction
6) gyw group chooser
n 8w group chosen
8) Y 4 gYD® group chooser and chosen
9) gy YW group interaction.

It is possible to mix and match among these models to consider, for example, the model
9 + g9 + Y@YW which allows individual actor parameters and a group interaction. As
soon as we contemplate such models we need to note that there is a partial hierarchy to the

models listed above, which we represent in Figure 2.

Figure 2. Hierarchy Displaying Levels of Parameters in the Loglinear Models

Level 4 5
/ \
/ N\
Level 3 4 9
/) i
/| |
Level 2 2 8 3
g NN/
" NP N/
= Level 1 6 7
- . \/
Level 0 : 1
;-"
-
b The diagram indicates that any parameter at level i implies all those parameters at levels less
E-‘ than i. The modelling strategy we have outlined above can be used for other types of flows
h (e.g. mutual, reciprocal) and multiple relationships. In these cases we need to be concerned
I -
[ about the hierarchical structure between parameter types as well as within parameter types.
2
-
L
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4.3 Fitting Models

If we restrict ourselves to actor parameters then we can fit the models described above using
the IPFP to adjust simple margins of the symmetric g X g X (2X2)® data array. When models
with group parameters are included it is still possible to use the IPFP but now a more general

notion of margin is needed.

Let us consider two relations and the model log P(D, = d ) = AP+ 8, ie a choice
parameter on only the first relationship. The sufficient statistics for this model in the

symmetric data array are

(12] Z X for all i,j,
kimn L™

[13] zZ X for all ik,
j‘emn uk_emn

[24] 2 X for all j,£.
ikmn ijkzmn ° J

Now consider the model A/ + 017“’. For this mode! the sufficient summary is

z X for all ij,
lmn e

z X xium for d = 1....G and for all k,
1:th #mn .

z z Xijk fm for d = 1.....G and for all £
jeG, ikmn "

We extend the usual square bracket notation to this situation. Recall that [12] indicates that
for each value of i and j we should sum over all other dimensions in the table. We shall use
the notation [-1 -2] to indicate that for each Gd and Ge we should sum over all entries in the

table, A simple example should help to explain the noyation.
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Consider the following 3X3 table:

Let GI = {12} and G2 = {3}. Then the [1] margin is the triple (a+b+c, d+e+f, g+h+i), the
(-1) margin is the pair (a+b+c+d+e+f, g+h+i) and the [-1 -2] margin is the table
a+b+d+e c+f
g+h i
In effect we have collapsed over the groups. It is an easy application of the IPFP to fit
models which use this generalized notion of margin. We note, however, that most standard
packages, which contain an IPFP routine, cannot be cajoled into fitting such models without

some tinkering.

We now use the notation to show which models correspond to certain parametrizations for
R = 2. Table 6 lists some of the choice models, and a small selection of other possible models.
There are many possible models with many possible combinations of population, group, and
individual pairameters. ‘

4.4 An Example: Sampson’s Data

In order to demonstrate the ubiquity and apparent complexity of these social network
models, we have taken a somewhat unusual (and bold) approach to the analysis of Sampson’s
network of eighteen monks. We view the four positive attributes (like, esteem, influence, and
praise) as realizations of a single positive affect process, and the four negative relations
(antagonism, disesteem, negative influence, and blame) in a similar manner. There is substantial
justification for this pooling. White, Boorman, and Breiger (1976) found that when the

eighteen actors are aggregated into three blocks, the concrete social structure of this network is
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Table 6. A Selection of Possible Models for R=2
Parameters  Margins to be Fit
choice . 6, (121 (31 (4] simple choice
g (121 [13] [24) o
g% (121 [14] [23) '}
L !
o% + 6% [12) 1131 [14) [23) [24] o
.4
6!y (121 (-131 (-24) L
67P (121 (-14] (23] :
o 4
gYRT® (121 [-1 23] [-1 -2 4] :
L
mutuality P (121 [134] ([234] ]
PO [12) [-156] [-25] |
pyaym (12] (-1 -2 34] ®
.-.1
multiplex oo [12] (1351 (246)
8% [12) [-146] [-235] -
grOrT 112 (-1 -2 35) (-1 -2 46] |
reciprocity p'l‘z’ (121 (136] (245} °
hal
Py [12) [-145) [-236) o
PYTP112) (-1 -2 36) [-1 -2 45) -
etc. °
T Y
i
.
]
_.l‘
|
:
{
. q
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much the same across the four pairs of positive/negative relations: "A top-esteemed block
(consisting of 7 actors) unambivalently positive toward itself, in conflict with ... a second, more
ambivalent block (also of 7 actors) to which is atiached a block of lasers (of size 4). We

label these blocks or subgroups as

G =11, 2 .. 7}, Gz = {8, 9, ..., 14}, G3 = {15, 16, 17, 18} .

We therefore aggregate over both sets of relations by summing the four sociomatrices for the
positive relations, and the four negative relations, to obtain one positive and one negative
relation matrix. These arrays, given in Table 7, have entries indicating the number of times

actor i chooses actor j, either on the positive or negative choices.

The techniques we have used to analyze 0-1 sociomatrices are directly applicable here.
Furthermore, with multiple observations on each actor, the asymptotic basis for the goodness—
of-fit statistics stands o firmer ;rounci. In our analysis we have examined the 18 X 18 X
(2x2) x (2x2) (corresponding to actor X actor X positive X negative) version of this table ‘and

have used the three groups given above.

A priori, some choices are unlikely to be reciprocated across relations, and we should find a
simple choice or group choice model to be an adequate summarization of the flows of
attitudes, both positive and negative, across and between these three, substantively different,

subgroups. A summary of some of the models that we fit to this network is given in Table 8.

The difference in goodness of fit between models 2 and 3 (which in a sense is a measure of
the impact of the grouping effect) is statistically significant at any reasonable level of
significance and is typical of the improvement resulting from the addition of simple grouping
parameters. Similarly the difference in G* values for models 4 and § is also large but is less
than the difference in degrees of freedom. The small number of degrees of freedom for
models is caused by a large number of fitted zeros. Indeed, any model which includes even
an overall multiplex (on) parameter induces at least 2142 fitted zeros out of the 18 X 18 X 4

X 4 = 5184 cells in the table, and the goodness of fit statistics are not dramatically improved
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Table 8

Summary of Fit of Several Models on Sampson’s Data

Model Margins d.f. G? ) &

1 At [12) 2295 2835 6252
2. AP 6, + 8, (12] (3] (4] [5] (6] 2291 1453 3392
3. AU 0‘17“" + 027‘3”[12] [-13] [-14] [-15] [-16] 271 1395 3350

. 0(27“)) . 9(270'” [-23] [-24) [-25] (-26]

4. N+ g oY 112] [-136] (-236] 2259 1368 3088
[-145) [-245) -

5. SRR A A (12) [-1-236]1 [-1-245] <1800 1180 2158

by the inclusion of these parameters. We note the very large differences between the G> and
X? values in Table 8, which go in the opposite direction from that suggested by the argument
given in Larntz (1978). The only explanation we can offer is the presence of the large

proportion of observed zero cells.

It appears that model 4, which includes different reciprocity effects for each group, provides

a reasonable description of the data.

A more thorough analysis of the data for this network should include a detailed study of the
similarities of the four pairs of positive/negative relations, and should experiment with other,
more refined partitions of the actors, as suggested by Breiger, Boorman, and Arabie (1975).
We have just touched the surface of a rather large, and certainly rich, set of longitudinal data.

We have studied the monastery structure only at the midpoint of a 12-month period, during

which a crisis over theology occurred, and the group split up.




§. CONCLUSION

In this paper, we have considered a variety of loglinear models for micro and macro analysis
of binary social network data, and we have demonstrated how these models can be treated in a
unified manner. The models we have considered describe important aspects of the data, and
we have had the good fortune to be able to take advantage of relatively easy estimation

methods for model fitting.

Unfortunately, large data sets and corresponding large models are almost axiomatic with the
type of data we have described here. Our modelling has been consciously and unconsciously
influenced by what it is possible for us to compute. The models with separate group effects
seem to be at the limits of the computational methodology we have ﬁresented. Other models
which could be considered interesting (e.g. additional relationships between the groups, akin to
ordered category models for contingency tables) have not been mentioned. This is not because
we find them uninteresting, but rather because the prospect of numerically fitting such models

is daunting.

We believe we have indicated how more general models could be formulated, and have
presented some of the techniques that are appropriate for fitting the models to actual data.
Further advances in methodology in this area are likely to be as dependent upon advances in

numerical algorithms or computer hardware, as they will be on new statistical ideas.
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